REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

1. AGENCY USE ONLY (Lesve blank) 2. REPORT DATE (2-20-05) 4. TITLE AND SUBSTITE (2-20-05) 5. FUNDING NUMBERS (3. Systems) (4. AUTHOR(S) (5. AUTHOR(S) (5. AUTHOR(S) (6. AU	gathering and maintaining use data needed, and completing and reviewing the collection of information. Send comments regar- collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Mahagement and Budget, Paperwork Reduction Proje	Information Operations and Reports, 1215 Jefferson ect (0704-0188), Washington, DC 20503.
A TITLE AND SUBTRIE Predictability in Unstable Continuous Systems! Predictability and Ognatics of Geophys. Calffling 6. AUTHORIS) Roger M. Samelson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dregon State University Corvellis, Of 97331 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION/STATEMENT Approved for Public Release 12. ABSTRACT (Maximum 200 words) 13. ABSTRACT (Maximum 200 words) 14. SUBJECT TERMS 15. NUMBER Of PAGES 15. NUMBER Of PAGES 16. FUNDING NUMBERS 17. PERFORMING ORGANIZATION REPORT NUMBER RESPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 16. PERFORMING ORGANIZATION REPORT NUMBER 17. SUPPLEMENTARY NOTES 18. PERFORMING ORGANIZATION REPORT NUMBER 19. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NUMBER 10. SUPPLEMENTARY NOTES 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION STATEMENT A Approved for Public Release 12. DISTRIBUTION TO CODE 13. ABSTRACT (Maximum 200 words) DISTRIBUTION TO CODE 14. ADDRESS STATEMENT A Approved for Public Release 15. DISTRIBUTION CODE 16. PERFORMING ORGANIZATION REPORT NUMBER 17. DISTRIBUTION STATEMENT A Approved for Public Release 18. PERFORMING ORGANIZATION REPORT NUMBER 19. SPONSORING/MONITORING AGENCY NUMBER 10. SUPPLEMENTARY NUMBER 10. SUPPLEMENTARY NUMBER 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION STATEMENT A Approved for Public Release 12. DISTRIBUTION STATEMENT A Approved for Public Release 12. DISTRIBUTION STATEMENT A Approved for Public Release 12. DISTRIBUTION CODE 12. DISTRIBUTION STATEMENT A Approved for Public Release 12. DISTRIBUTION STATEMENT A Approved for Public Release 12. DISTRIBUTION CODE 12. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) 14. DISTRIBUTION STATEMENT A Approved for Public Release 15. FUNDING NUMBER 16. AUTHORIST TABLES 16. NUMBER OF PAGES		
Roger M. Saleson 7. Performing Organization Name(s) and address(es) Oragon State University Corvellis, OF 97331 9. Sponsoring/Monitoring agency name(s) and address(es) ONL 11. Supplementary notes 122. Distribution/Avarability statement Onl Onl Distribution Statement A Approved for Public Release Distribution Unifiritied Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows.	4. TITLE AND SUBTITLE Predictability in Unstable Continuous Systems/	5. FUNDING NUMBERS
Roger M. Saleson 7. Performing Organization Name(s) and address(es) Oragon State University Corvellis, OF 97331 9. Sponsoring/Monitoring agency name(s) and address(es) ONL 11. Supplementary notes 122. Distribution/Avarability statement Onl Onl Distribution Statement A Approved for Public Release Distribution Unifiritied Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows.	Predictability and Dynamics of Geophysical Fluid	N00014-98-1-0813
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release 13. ABSTRACT (Maximum 200 words) 13. ABSTRACT (Maximum 200 words) 14. SUBJECT TERMS DISTRIBUTION OF PAGES 15. NUMBER REPORT NUMBER 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 110. SPONSORING/MONITORING AGENCY REPORT NUMBER 111. SUPPLEMENTARY NOTES 112b. DISTRIBUTION CODE 12c. DISTRIBUTION STATEMENT A Approved for Public Release 13. ABSTRACT (Maximum 200 words) DISTRIBUTION Unfiltritled Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows.	0. Notificially	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for Public Release 13. ABSTRACT (Maximum 200 words) DISTRIBUTION Unlimited Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbancés to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows.		
11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVARIABILITY STATEMENT Unlimited Public Access DISTRIBUTION STATEMENT A Approved for Public Release 13. ABSTRACT (Maximum 200 words) DISTRIBUTION Unlimited Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 14. Subject terms		NØ1170
11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Link Approved for Public Release 13. ABSTRACT (Maximum 200 words) DISTRIBUTION Until Inited Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 14. Subject terms		
12a. DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION STATEMENT A Approved for Public Release 13. ABSTRACT (Maximum 200 words) Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 14. Subject terms	ONR	AGENCY REPORT NOMBER
DISTRIBUTION STATEMENT A Approved for Public Release 13. ABSTRACT (Maximum 200 words) Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 14. SUBJECT TERMS	11. SUPPLEMENTARY NOTES	
DISTRIBUTION STATEMENT A Approved for Public Release 13. ABSTRACT (Maximum 200 words) Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 14. SUBJECT TERMS 15. NUMBER OF PAGES		
Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 15. NUMBER OF PAGES	12a. DISTRIBUTION/AVAILABILITY STATEMENT	12b. DISTRIBUTION CODE
Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 15. NUMBER OF PAGES	Approved for Public Release	
periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows. 15. NUMBER OF PAGES	13. ABSTRACT (Maximum 200 words) DISTRIBUTION UTILITIES	
	periodic solutions, time-dependent normal modes (Floquet vector in a two-layer quasi-geostrophic channel model. The model was strongly nonlinear regimes, in which small disturbances to an unbaroclinic shear flow grow to finite amplitude and continue to varbitrarily long times. The computation of time-dependent, norm unstable, nonlinear, time-periodic basic flows in a high-dimensimodel opens a new perspective on the analysis of disturbance games flows, and on the closely related problem of error growth in present the strong problem.	ors), and singular vectors studied in weakly and instable, steady, zonal, vacillate irregularly for mal-mode disturbances to ional geophysical fluid growth in time-dependent
	14. SUBJECT TERMS	15. NUMBER OF PAGES

18. SECURITY CLASSIFICATION OF THIS PAGE

17. SECURITY CLASSIFICATION OF REPORT

19. SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

FINAL TECHNICAL REPORT

ONR GRANT #N00014-98-1-0813

PI: Roger M. Samelson
Title: Predictability in Unstable, Continuous Systems/Predictability and Dynamics of
Geophysical Fluid Flows

Research under this grant focused primarily on computations of unstable nonlinear periodic solutions, time-dependent normal modes (Floquet vectors), and singular vectors in a two-layer quasi-geostrophic channel model. The model was studied in weakly and strongly nonlinear regimes, in which small disturbances to an unstable, steady, zonal, baroclinic shear flow grow to finite amplitude and continue to vacillate irregularly for arbitrarily long times. The computation of time-dependent, normal-mode disturbances to unstable, nonlinear, time-periodic basic flows in a high-dimensional geophysical fluid model opens a new perspective on the analysis of disturbance growth in time-dependent flows, and on the closely related problem of error growth in predictive models of time-dependent flows.

In the strongly nonlinear regime, unstable periodic solutions were identified and computed using an efficient Newton-Picard method. The complete Floquet spectra computed for strongly nonlinear cycles show structure similar to that found in the weakly nonlinear case. The Floquet vectors fall into two classes with direct physical interpretations: wave dynamical (WD) modes and damped-advective (DA) modes. The WD modes have large scales and can efficiently exchange energy and vorticity with the basic flow; thus, the dynamics of the WD modes reflects the dynamics of the wave-mean oscillation. These modes are analogous to the normal modes of steady parallel flow, and the leading WD Floquet exponents provide useful approximations to the leading Lyapunov exponents of the chaotic solution to which nonlinear disturbances to the unstable periodic cycle converge. The DA modes have fine scales and dynamics which reduces, to first order, to damped advection of the potential vorticity by the basic flow. While individual WD modes have immediate physical interpretations as discrete normal modes, the DA class instead represents a generalized solution to the damped advection problem.. The existence of these two classes of normal-mode solutions to the numerical Floquet eigenvalue problem indicates a dynamical splitting of the linear disturbance problem for this time- and space-dependent baroclinic flow.

AWARDS

Christopher L. Wolfe, Student Fellowship, Woods Hole Summer Program in Geophysical Fluid Dynamics

Approved for Public Release
Distribution Unlimited

a verifica en

20051227 041

LIST OF PUBLICATIONS

- de Szoeke, R. A., and R. M. Samelson, 2002. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. Journal of Physical Oceanography, 32, 2194-2203.
- Kuebel, B. T., J. S. Allen, P. A. Newberger, and R. M. Samelson, 2003. A modeling study of Eulerian and Lagrangian aspects of shelf circulation off Duck, North Carolina. Journal of Physical Oceanography, 33, 2070-2092.
- Kuebel Cervantes, B. T., J. S. Allen, and R. M. Samelson, 2004. Lagrangian characteristics of continental shelf flows forced by periodic wind stress. Nonlinear Processes in Geophysics, 11, 3-16.
- Liu, J.-G., R. Samelson, and C. Wang, 2005. Global weak solution of planetary geostrophic equations with inviscid geostrophic balance. Applicable Analysis, in press.
- Samelson, R. M., 2001a. Periodic orbits and disturbance growth for baroclinic waves. Journal of the Atmospheric Sciences, 58, 436-450.
- Samelson, R. M., 2001b. Lyapunov, Floquet, and singular vectors for baroclinic waves. Nonlinear Processes in Geophysics, 8, 439-448.
- Samelson, R. M., 2004. Simple mechanistic models of mid-depth meridional overturning. Journal of Physical Oceanography, 34, 2096-2103.
- Samelson, R. M., P. Barbour, J. Barth, S. Bielli, T. Boyd, D. Chelton, P. Kosro, M. Levine, E. Skyllingstad, and J. Wilczak, 2001. Wind stress forcing of the Oregon coastal ocean during the 1999 upwelling season. Journal of Geophysical Research-Oceans, 107 (C5), 10.1029/2001JC000900.
- Samelson, R. M., E. D. Skyllingstad, D. B. Chelton, S. K. Esbensen, L. W. O'Neill, and N. Thum, 2005. On the coupling of wind stress and sea surface temperature. Journal of Climate, in press.
- Samelson, R. M., and E. Tziperman, 2001. Instability of the chaotic ENSO: the growth-phase predictability barrier. Journal of the Atmospheric Sciences, 58, 436-450.
- Samelson, R. M., and C. L. Wolfe, 2003. A nonlinear baroclinic wave-mean oscillation with multiple normal-mode instabilities. Journal of the Atmospheric Sciences, 60, 1186-1199.
- Wolfe, C. L., 2003. Eddy generation by flow over variable topography: some experiments. In *Proceedings of 2003 Summer Program in Geophysical Fluid Dynamics*, Woods Hole Tech. Rep., Woods Hole Oceanographic Institution, Woods Hole, MA, USA. Available on-line at: http://gfd.whoi.edu/proceedings.html.
- Wolfe, C. L., and C. Cenedese, 2005. Laboratory experiments on eddy generation by a buoyant coastal current flowing over variable bathymetry. Journal of Physical Oceanography, in press.
- Wolfe, C. L., and Samelson, R. M., 2005. Normal mode analysis of a baroclinic wave-mean oscillation. Journal of the Atmospheric Sciences, submitted.